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ABSTRACT

1 To simulate long-run averages of time integrals of a recurrent semi-

Markov process efficiently, convert to discrete-time by simulating only an

imbedded chain and computing the conditional expectations of everything else

*1 needed given the sequence of states visited. This reduces asymptotic variance

and eliminates generating holding-time variates. In this setting,

uniformizing continuous-time Markov chains is not worthwhile. -We-generalize

beyond semi-Markov processes and cut ties to regenerative simulation

methodology. , .
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SIGNIFICANCE AND EXPLANATION

A broad class of stochastic systems which are studied in operations

research may be modelled as semi-Markov processes. Frequently, one is

interested in obtaining an estimate, via simulation, for the steady-state

average of such a process. In this paper, we offer new insights on an easily

implemented procedure, which can substantially improve the accuracy of such an

estimate. The basic idea involves passing from the continuous-time semi-

Markov process to an appropriate discrete-time sequence, by conditioning out

holding time variables.
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DISCRETE-TIME CONVERSION FOR SIMULATING
SEMI-MARKOV PROCESSES

Bennett L. Fox ' and Peter W. Glynn
2

1. Introduction

*Let X be a positive recurrent semi-Markov processes and f be a

real-valued function. We want to estimate the time average

r - lrn (I/T)E fT f(X(t))dt (1)

T+" 0

assuming it exists. Section 2.1 starts with a standard regenerative

simulation approach and then converts to discrete time by conditioning on the

sequence Y - (Y0 'Y1 ,...) of states visited in an imbedded Markov chain. This

reduces variance and also, typically, the work to simulate. Hordijk,

Iglehart, and Schassberger [6] adopt the same approach for the special case of

continuous-time Markov chains, except that they prove variance reduction by

explicit calculation without mentioning the general principle that computing

conditional expectations reduces variance. Peter Lewis informed us that he

too was aware that this conditional Monte Carlo approach would streamline the

proofs in [6]. Fox and Glynn [5] obtain an analog of these results for

certain finite-horizon semi-Markov processes. Uniformization pays in [5] but

not here as shown in [6] and, with less effort, in section 3.

Section 2.2 considers more general processes and cuts ties to the

regenerative approach.
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2. Discrete-time conversion reduces variance

In section 2.1 we sketch how to generalize results of [6] to

regenerative semi-Markov processes and at the same time indicate how to

simplify proofs. Section 2.2 gives a formal proof and further generalizes the

class of processes considered in [61; more importantly, it allows

nonregenerative approaches.

In section 2, we limit the discussion to a comparison of asymptotic

variances. To estimate these variances and construct confidence intervals,

see for example Bratley, Fox, and Schrage [2], chapter 3. Standardized time

series can also be used, as in Schruben [7].

2.1 Regenerative framework

Let i be a (convenient) recurrent state and let S be the time at which

state i is visited for the j-th time. We assume that state i is visited at

time 0 and set So 0  0. Put

SS J - Si (2)

the length of the J-th regeneration cycle. Following for example the

development in Bratley, Fox, and Schrage [21, section 3.7, define

v fSVsj~s+j) f( x(t) dt (3) 1

n-1
V (i/n) 1 v (4)

n- I
" (/n) I T (5)
n J.0

* Dk =Vk - rrk (6)

r - V /i (7) .
n n n (7

2
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n -E(n I ]  (8)

'n [- n I Y]/ (9)

We reach state Y at time T . Let
j J*

a Tk - Tk  (10)

cP(ak dt I Y) F(YkYk+l,dt) (11)

u(x,y) =f zF(xy,dz). (12)
0

As Jump Nn ends, we visit state I for the n-th time. This gives
n

in /n) I u(Yj'yj+I) (13)

NN--n

E[Vn I Y] - (1/n) I f(Y) j,Yj+l) (14)
J.0

so we can compute rn in (9). Computing and accessing the expected transition

times Ij(Yj,Yj+1 ) and the transition probabilities are similar tasks. Fox and

Glynn [5] and references cited there discuss the latter. When uIW Jl

depends only on Yj, the former job Is normally easy.

Since X is a semi-Markov process (by assumption), the ak's are

conditionally independent given Y. So Y regenerates implies X regenerates.

Assuming certain mild moment conditions [inequality (24) will do] and

mimicking standard arguments, we get

*fn6 - r) > (6/ETI) N(0,1) (15)

/n rn -r -C/E) N(0,1) (16)

where

3
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2 (7
6 =Var Dk

a Var ([ y]). (18)

Using the standard variance-reducing property of conditional

expectation, we get a 4 6. Clearly, ErT I ET1, so 1n has smaller variance

than r"
n

2.2 Generalization and formal proof

Now we neither assume that Y is a Markov chain nor that the a 'a are
k*

conditionally independent given Y. The only structural assumptions relating Y

and X are (11) and (19). With these provisos, define Yk' aks and i(x,y) as

. before. Let I be an indicator, To - 0, Tk + -, and

X(t) - I Yk I(Tk C t < Tk+l). (19)
k-0

Thus, X is more general than a semi-Markov process.

The obvious estimator is

T

n (1/T n) n f(X(s))ds (20)

Typically, the expected work to generate Rn or rn grows at rate n whether n

indexes "transitions" as in this section or cycles as in section 2.1. So we

compare efficiencies of various estimators with respect to n.

Roughly speaking, to convert to discrete time we compute conditional

expectations given Y. The alternative estimator

n-I n-i
n f(yk)lI(Uk'yk+1)/ 1 U('kk+l} (21)

n k-O kO

is certainly plausible. The only difference betwen Rn defined by (20) and n

defined by (7) lies in what n indexes; likewise, for n and rn" We show that

4
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ibeats R in a precise sense, provided that R is no harder to compute than
n nn

n

We assu...e that X satisfies

(A) T nn-> > 0 (8constant)

(B) there are finite constants r1 and a~ such that

n)(i f 0) n f( X(s)-r ) ds -0iN(0,1)

(C) there are finite constants r. and a02 such that

- n-i
414 (fnj( tYk)-r2JU'2k3Ik+ij -> 012 N(0,1)

k-0

(D) the sequences {n 1 n f(Yk)ak n >i1}
k-0

T
{T /n: n > 1}, and f{J'[f 0n (f( X(s)) -r) ds] 2  n~ i}1

are uniformly integrable.

Section 2.3 contains examples.

Not surprisingly, we have

Proposition. r, M r 2

Proof. From (A) and (B), we get f±-J'f( X(s))Jds ->r B . Equivalently,

I f(Yk)ak 1>rB rm() eas get weak convergence to r1 a in thenk=0
function space Li. From p. 306 of Chung [41, we therefore get

I n-I1
n I E( f(Yk)czk 1Y) ->r 1O;

k-O

5



The left side is the numerator of R . Likewise, for the denominator of R weV. n n

-: get

n-1
n k-0 ~k k+1

From (C), Rn -> r2 . Comparing these results proves that rI - r2 * I

We are now ready to compare R and R n From (A) and (B):.n n°

/n (Rn-r1 ) -> (a,/0) N(O,l); (22)

from (A) and (C):

/ n-r2) -> (02/0) N(0,1). (23)

That confidence intervals with fixed coverage based on itn are

asymptotically shorter than those based on R now follows from our mainn

2 2Theorem. 02 o 1.

Proof. By Jensen's inequality for conditional expectations (see p. 302 of

Chung [41),

1tTnf ~ 2T y

n-1EeT nE fx(s))-r)ds)2 > n-1 E[(f n( qxs))-r)ds 1 Y)2]
0 0

Sn-1E( nI ( f(y i) r)u(yj,yJ41) ] 2.

J-0

* 2
By (D) the extreme left side converges to a We show that the right side

2converges to a2 , which requires a uniform integrability argument.

' ' Let
,Ije ,

A n I (Y r) u(Y ,Y+x)]2  k,
,, J-0

4,.6
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Since Ank is Y-measurable, apply Jensen's inequality again to get

A1 n f( x( s)-r) ds) ) ].

Use (C) to see that lim sup P(A + 0 and then theorem 4.5.3 of Chung [4] to
k 

n

see that the term in brackets goes to 0 uniformly in n as k + o. This proves

uniform integrability of the term in braces. I

2.3 Examples

1. Let X be a semi-Markov process for which Y is regenerative: there exists s

such that P[Y = s infinitely often) - 1. Set T = inf{n > 1: Y = s} and

n n

assume that YO = s and

T- 1
E( Z (If(Yk)I + 1)ak) ' < . (24)

-. k=O

Then (A)-(D) hold; for uniform integrability, see Chung [3].

2. Let X be a semi-Markov process for which Y is a stationary *-inixing

process. If Y is *-mixing, then {f(Yn)an} is *-mixing with mixing

coefficients doubled since

' . iP~f(Y0)cz0 £ A, f(C) £.n B} - Plf(Y0)cz0 £ APlf(Y)I B},

-Pl IE{P{fCY0 )a 0  A n Y}.P ff(Y)an B I Y}} - P{f(Y 0)a 0 £ A}.nY)an B}

Igl(Y0 ,Y)g 2 (Y,Yn 1 ) - Egl(Y 0 , E Y I

whe re g, (x,y) - P{ f( Y0 ) c A I Y0 " x, Y, = y}

Sg 2 (x,y) P{ f( Yn)a c B Yn = x, Yn 1  y})

2n.Eg,(Y 0 Y1 ) " 2 • P{ f( Y0 )c 0 E Al,

7
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• .the inequality following from (20.28) of Billingsley [1]. Suppose that

1*n 1 / 2 <

rim0

and E[(f(Y)+1) ao 2 <

Then, (A) - (D) hold (see theorem 20.1 of Billingsley [1]).

3. Unifonaization loses

For the specie! case of continuous-time Markov chains with conservative

generator Q and jump rates having least upper bound X < -, we can uniformize.

This corresponds to the equal holding-time method of [6]. The method of

* section 2.], without unformizatlon, corresponds to the constant holding-time

method of [6]. With uniformization, the imbedded discrete-time Markov chain V

has null Jumps from a state to itself. Thus, to generate any fixed number of

regeneration cycles with the equal holding-time method requires more Jumpa,

hence more work. It also gives more variance, as shown in [6].

We now give a simpler proof. Delete all null Jumps from W to get Y,

giving o(Y) c o(W) where a(H) is the o-field generated by H. By proposition

G.1 in [5] for example, we get higher variance by conditioning on the latter.

Thus

Var (E[D k I Y]) Var (E[D I W]). (25)

Nevertheless, what is the best way to uniformize? To get a legitimate

representation, we must choose the (Poisson) clock intensity 0 ) A in the

uniformized process. Choosing e - A stochastically minimizes the number of

Jumps in W to simulate a fixed number of regeneration cycles, hence

S - , 8
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stochastically m.nimizes work. Hordijk, Iglehart, and Schassberger [6] show

by explicit caiculation that choosing e - X also minimizes a in (18). An

outline of an easier proof follows. Subscript W and X to indicate clock

intensity. Put X and X6  on the same probability space using three

synchronized streams of common random numbers. Stream 1 generates the common

non-null jump subsequences of W and W . Stream 2 generates the null jumps so

that each null-jump sequence in W is at most as long as the corresponding

null-jump sequence in W . Stream 3 generates clock chimes so that chime j of

the 0-clock sounds before or with chime j of the X-clock. Appendix B of [5],

in a more general setting, spells out the details. Thus

C( ) E O(We) (26)

for all 6 ) X. Again using the fact that conditioning on less reduces

variance,

Var (E[D, 1 0(W) < Var E(Dk  o(we)J, (27)

illustrating the power of the conditional Monte Carlo approach.

In the setting of section 2.2 specialized to continuous-time Markov

chains, similar arguments give counterparts to (25) and (27). Since

uniformization increases both variance and work, don't use it there either.

. .. . . . .
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